Huici, Daniel; Rodríguez, Ricardo J.; Mena, Eduardo
APOTHEOSIS: An efficient approximate similarity search system Journal Article
In: SoftwareX, vol. 29, pp. 102016, 2025, ISSN: 2352-7110.
Abstract | Links | BibTeX | Tags: Approximate K-nearest neighbors, Approximate matching, Approximate search methods, Data similarity analysis, similarity digest algorithms
@article{HuiciRM-SoftX-25,
title = {APOTHEOSIS: An efficient approximate similarity search system},
author = {Daniel Huici and Ricardo J. Rodríguez and Eduardo Mena},
url = {https://webdiis.unizar.es/~ricardo/files/papers/HuiciRM-SoftX-25.pdf},
doi = {10.1016/j.softx.2024.102016},
issn = {2352-7110},
year = {2025},
date = {2025-02-01},
urldate = {2025-02-01},
journal = {SoftwareX},
volume = {29},
pages = {102016},
abstract = {APOTHEOSIS is a tool for efficiently identifying and comparing data similarity in large datasets, addressing challenges faced by traditional methods such as scalability and speed. APOTHEOSIS overcomes them by combining advanced algorithms and data structures, enabling fast and accurate similarity analysis. Specifically, it uses a custom hierarchical small navigation world as an approximate $K$-nearest neighbors search method, and approximate similarity digests algorithms to find common features between similar data items, also supporting various distance metrics beyond vector-based approaches. Our software tool is designed for seamless integration into research workflows, improving reproducibility and facilitating the comparison of large-scale, high-dimensional data comparison across multiple domains.},
keywords = {Approximate K-nearest neighbors, Approximate matching, Approximate search methods, Data similarity analysis, similarity digest algorithms},
pubstate = {published},
tppubtype = {article}
}
Martín-Pérez, Miguel; Rodríguez, Ricardo J; Breitinger, Frank
Bringing Order to Approximate Matching: Classification and Attacks on Similarity Digest Algorithms Journal Article
In: Forensic Science International: Digital Investigation, vol. 36, pp. 301120, 2021, ISSN: 2666-2817.
Abstract | Links | BibTeX | Tags: Approximate matching, Bytewise, Classification scheme, Fuzzy hashing, Similarity digest algorithm, Similarity hashing
@article{MRB-FSIDI-21,
title = {Bringing Order to Approximate Matching: Classification and Attacks on Similarity Digest Algorithms},
author = {Miguel Martín-Pérez and Ricardo J Rodríguez and Frank Breitinger},
url = {http://webdiis.unizar.es/~ricardo/files/papers/MRB-FSIDI-21.pdf},
doi = {10.1016/j.fsidi.2021.301120},
issn = {2666-2817},
year = {2021},
date = {2021-01-01},
journal = {Forensic Science International: Digital Investigation},
volume = {36},
pages = {301120},
abstract = {Bytewise approximate matching algorithms (a.k.a.~fuzzy hashing or similarity hashing) convert digital artifacts into an intermediate representation to allow a faster comparison them. They gained a lot of popularity over the past decade with new algorithms being developed and released to the digital forensics community. When releasing algorithms (e.g., as part of a scientific article), they are frequently compared with other algorithms to outline the benefits and sometimes also the weaknesses of the proposed approach. However, given the wide variety of algorithms and approaches, it is impossible to provide direct comparisons with all existing algorithms.
In this paper, we present the first classification of approximate matching algorithms which allows an easier description and comparisons.
Therefore, we first reviewed existing literature to understand the techniques various algorithms use and to familiarize ourselves with the common terminology. Our findings allowed us to develop a categorization relying heavily on the terminology proposed by NIST SP 800-168. In addition to the categorization, this article also presents an abstract set of attacks against algorithms and why they are feasible. Lastly, we detail the characteristics needed to build robust algorithms to prevent attacks. We believe that this article helps newcomers, practitioners, and experts alike to better compare algorithms, understand their potential, as well as characteristics and implications they may have on forensic investigations.},
keywords = {Approximate matching, Bytewise, Classification scheme, Fuzzy hashing, Similarity digest algorithm, Similarity hashing},
pubstate = {published},
tppubtype = {article}
}
In this paper, we present the first classification of approximate matching algorithms which allows an easier description and comparisons.
Therefore, we first reviewed existing literature to understand the techniques various algorithms use and to familiarize ourselves with the common terminology. Our findings allowed us to develop a categorization relying heavily on the terminology proposed by NIST SP 800-168. In addition to the categorization, this article also presents an abstract set of attacks against algorithms and why they are feasible. Lastly, we detail the characteristics needed to build robust algorithms to prevent attacks. We believe that this article helps newcomers, practitioners, and experts alike to better compare algorithms, understand their potential, as well as characteristics and implications they may have on forensic investigations.